J Intell Inf Syst (2007) 29:253-278
DOI 10.1007/s10844-006-0018-8

Preserving privacy in association rule mining
with bloom filters

Ling Qiu - Yingjiu Li - Xintao Wu

Received: 19 May 2005 / Revised: 4 November 2005 /
Accepted: 17 January 2006 / Published online: 27 January 2007
© Springer Science + Business Media, LLC 2007

Abstract Privacy preserving association rule mining has been an active research
area since recently. To this problem, there have been two different approaches—
perturbation based and secure multiparty computation based. One drawback of the
perturbation based approach is that it cannot always fully preserve individual’s pri-
vacy while achieving precision of mining results. The secure multiparty computation
based approach works only for distributed environment and needs sophisticated
protocols, which constrains its practical usage. In this paper, we propose a new
approach for preserving privacy in association rule mining. The main idea is to use
keyed Bloom filters to represent transactions as well as data items. The proposed
approach can fully preserve privacy while maintaining the precision of mining results.
The tradeoff between mining precision and storage requirement is investigated. We
also propose §-folding technique to further reduce the storage requirement without
sacrificing mining precision and running time.

Keywords Association rule mining - Bloom filters - Privacy preserving

L. Qiu (=)

School of Maths, Physics and Information Technology, James Cook University,
Townsville, Queensland 4811, Australia

e-mail: ling.qiu@jcu.edu.au

Y. Li

School of Information Systems, Singapore Management University,
Singapore 178902, Singapore

e-mail: yjli@mu.edu.sg

X. Wu

Department of Computer Science, University of North Carolina at Charlotte,
Charlotte, NC 28223, USA

e-mail: xwu@uncc.edu

@ Springer

254 J Intell Inf Syst (2007) 29:253-278

1 Introduction

The explosive growth of the Internet and advances in networking technology are
pushing application logic and data processing from corporate data centers out
to proxy servers which are located at the edge of network. In concert with this
computing environment change, concerns about privacy of individual information
have been raised widely. When pushing applications to edge servers, it is essential to
provide adequate security measures to protect data from not only malicious outsiders
but also edge servers. The main reason is that the edge servers may not be fully
trusted or they can be penetrated in hacking activities. Previous work in this area
has been focused on how to secure traditional database queries. This line of work
includes encryption in outsourced databases (Agrawal, Kiernan, Srikant, & Xu, 2004;
Hacigumus, Iyer, Li, & Mehrotra, 2002a; Hacigumus, Iyer, & Mehrotra, 2002b, 2004;
Iyer, Mehrotra, Mykletun, Tsudik, & Wu, 2004; Mykletun, Narasimha, & Tsudik,
2004) and authentication in edge computing (Pang & Tan, 2004). Little work has
been focused on complex applications such as data mining, statistical analysis, and
data exploration when the data are pushed to privacy preserving. It is critical to
ensure that the overall performance, usability and scalability of those applications
are not affected much when security and privacy properties are enforced. In this
paper, we will focus on the task of mining association rules in edge computing
scenario. Our goal is to achieve the same (or even better) performance as in tradi-
tional corporate data centers while fully preserving privacy in data mining process.
Association rule mining has been an active research area since its introduction
(Agrawal, Imilienski, & Swami, 1993). Many algorithms have been proposed to
improve the performance of mining association rules or frequent itemsets. An
interesting direction is the development of techniques that incorporate privacy
concerns. One type of these techniques is perturbation based, which perturbs the
data to a certain degree before data mining so that the real values of sensitive data are
obscured while non-sensitive statistics on the collection of data are preserved. Some
recent work (Agrawal & Aggarwal, 2001; Atallah, Bertino, Elmagarmid, Ibrahim,
& Verykios, 1999; Dasseni, Verykios, Elmagarmid, & Bertino, 2001; Evfimievski,
Srikant, Agrawal, & Gehrke, 2002; Evfimievski, Gehrke, & Srikant, 2003; Oliveira &
Zaiane, 2002, 2003a, 2003b; Rizvi & Haritsa, 2002; Saygin, Verykios, & Clifton, 2001)
investigates the tradeoff between leakage of private information and accuracy of
mining results. One drawback of this approach is that it cannot always fully preserve
privacy of data while achieving precision of mining results (Kargupta, Datta, Wang,
& Sivakumar, 2003). The second type of these techniques is distributed privacy
preserving association rule mining (Kantarcioglu & Clifton, 2002; Vaidya & Clifton,
2002) based on secure multiparty computation (Yao, 1986). Though this approach
can fully preserve privacy, it works only in distributed environment (it requires two
or more parties to collaborate in mining process) and needs sophisticated protocols
(secure multiparty computation based), which makes it infeasible for our scenario.

1.1 Assumptions

In this paper, we continue the investigation of preserving privacy in association
rule mining. We propose the use of keyed Bloom filters for representing data
and run modified association rule mining algorithm over Bloom filters so as to

@ Springer

J Intell Inf Syst (2007) 29:253-278 255

preserve privacy. Bloom filter (Bloom, 1970) is a computationally efficient hash-
based probabilistic scheme that can represent a set of objects with minimal memory
requirements. It can be used to answer membership queries with zero false negatives
and low false positives. Bloom filters have been used by various applications in
network systems (Border & Mitzenmacher, 2002; Fan, Cao, Almeida, & Border,
2000) and in database systems (Cohen & Matias, 2003; Li & Ross, 1995; Mullin,
1990). We augment the hash functions used in Bloom filters with a secret key so
as to preserve the privacy of data in mining process.

Figure 1 illustrates a client-server-based architecture for our data mining problem.
Suppose we have a center data server and many clients. The center data server and
clients belong to the same party, whereas the edge servers are the external parties
to which we outsource partial data mining tasks. For example, the center data server
could be the headquarter (or certain branch such as the IT department) of a company
which may be located in New York and clients the other branches which may be
located in Singapore, London, Shanghai, and other places over the world. Branches
(clients) may send data mining requests to the headquarter (the center data server).
If all the mining requests are run at the center data server, the center server may
be overloaded which may result in delay of responding to requests and delay of
transferring mining results. By outsourcing, we may authorize partial mining tasks
to an edge server in London to process the requests by branches nearby (e.g., in
London or in Manchester) and thus to avoid overloading and delay.

To preserve privacy, the original data is first transformed to a collection of keyed
Bloom filters using a secret key by the center data server. The transformed collection
of data is then sent to various edge servers that execute association rule mining
requests from clients. A client will receive a collection of Bloom filters that represent
frequent itemsets and recover original frequent itemsets with a shared key.

We assume that there is no collusion between the edge servers and clients.
Therefore, without knowing the secret key and all the hash functions that map 1s
to a Bloom filter, the edge servers are unable to interpret the mining results. We
also assume that the primary goal of privacy preserving is to prevent an adversary
(e.g., possibly certain edge server) from obtaining sensitive data (e.g., the frequent
itemsets or the compositions of transactions) from public data (i.e., the Bloom filters
of transactions) while outsourcing mining tasks, as studied in (Kantarcioglu, Jin, &
Clifton, 2004). In Subsection 2.2, we shall discuss how this goal can be achieved
by Bloom filters. However, how difficult it is for an adversary to decipher all hash
functions and interpret (by certain cryptographic attack, e.g., brute force attack)
all items from the Bloom filters of transactions deserves further study especially in

cryptography.

Fig. 1 The client-server-based > .
architecture key _)O Client /
Bloom
> Edge Server I H il :
Center | lulters .
D Bloom : Client r
ata filters :
Server ; ——>(Client
Edge Server k H Bloom .
K g filters
2l 30 Client s

@ Springer

256 J Intell Inf Syst (2007) 29:253-278

It is possible that the requests of data mining tasks may come from customers
outside the company. One of the solutions is to add such a customer as a client in
the architecture shown in Fig. 1. Another solution is to send the recovered results
to this customer. This can protect the mechanism of Bloom filters. However, both
solutions may result in exposing of (partial) sensitive data because of potential
collusion between such unreliable customers and the edge servers. Therefore, how
to protect privacy under collusion is a challenging direction for future study.

1.2 Contributions of the paper

Compared with perturbation based approach, our method can achieve high precision
in data mining while fully preserving the privacy of individual data records. It
does not require costly cryptographic operations (as mining over encrypted data)
or sophisticated protocols (as secure multiparty computation based) to preserve
privacy. Moreover, our approach provides flexibility of storage requirement with
respect to precision demands in practice.

In brief, our paper has the following contributions:

e We propose a new approach to preserving privacy in association rule mining
which is different from both perturbation based and secure multiparty computa-
tion based approaches; we also give theoretical analysis on the effectiveness of
our approach.

e We define a framework for mining association rules from Bloom filters with
adjusted threshold; our experiments show that the mining precision is not
sensitive to the threshold adjustment.

e We test the proposed approach rigorously on both synthetic and real datasets;
our experiments show that the proposed approach is effective and flexible for
practical usage.

e We propose §-folding technique for saving storage without degrading mining
precision and performance. As indicated in our real data experiments, more than
a half storage can be saved due to the use of this technique.

1.3 Related work

Agrawal and Srikant (2000) first proposed the development of data mining tech-
niques that incorporate privacy concerns and illustrated a perturbation based ap-
proach for decision tree learning. Another class of privacy preserving techniques was
investigated intensively (e.g., see Du & Atallah, 2001; Pinkas, 2002, for surveys) and
then further studied in Du and Zhan (2002); Lindell and Pinkas (2002) for distributed
privacy preserving data mining using secure multiparty computation protocol.

Some effort has been made to address the problem of privacy preservation in
association rule mining. For distributed privacy preserving association rule mining,
it was considered in Kantarcioglu and Clifton (2002); Vaidya and Clifton (2002) the
problem over vertical and horizontal partitioned data, respectively. For perturbation
(or randomization)based approach, recent research has been focused on the tradeoff
between the information leakage and accuracy of mining results. In Atallah et al.
(1999); Dasseni et al. (2001), the authors considered the problem of limiting disclo-
sure of sensitive rules, aiming at selectively hiding some frequent itemsets from large
databases with as little impact on other, non-sensitive frequent itemsets as possible.

@ Springer

J Intell Inf Syst (2007) 29:253-278 257

The idea is to modify a given database so that the support of a given set of sensitive
rules decreases below a predetermined threshold. Similarly, in Saygin et al. (2001) a
method is presented for selectively replacing individual values with unknowns from a
database to prevent the discovery of a set of rules,while minimizing the side effects on
non-sensitive rules. In Oliveira and Zaiane (2003b), the authors studied the impact
of hiding strategies on an original data set by quantifying how much information is
preserved after sanitizing the data set. Researchers also studied in Evfimievski et al.
(2002); the problem of mining association rules from transactions in which the data
has been randomized to preserve the privacy of individual transactions. One problem
of this approach is that it may introduce some false association rules.

Related, but not directly relevant to our work, is the research in outsourced
databases (Agrawal et al., 2004; Hacigumus et al., 2002a, 2002b; Hacigumus, Iyer,
& Mehrotra, 2004; Iyer et al., 2004; Mykletun et al., 2004). Hacigumus et al. (2002a,
2002b); Hacigumus, Iyer, and Mehrotra (2004); Iyer et al. (2004) explored a new
paradigm for data management in which a third party service provides hosts database
as a service. They explored several encryption techniques in order to process as many
queries as possible at the service providers’ site, without having to decrypt the data.
Recently, Agrawal et al. (2004) presented an order-preserving encryption scheme for
numeric data that allows comparison operations to be directly applied on encrypted
data. However,encryption is time consuming and it may require auxiliary indices. It
is only designed for certain type of queries but not suitable for complex tasks such as
association rule mining.

1.4 Organization of the paper

The remaining sections are organized as follows. Section 2 reviews the basics of
Bloom filters and formulates our problem. Section 3 presents theoretical analysis
for the formulated problem. Section 4 outlines our algorithm for mining frequent
itemsets with Bloom filters. Section 5 reports experimental results of both synthetic
and real datasets.Section 6 concludes the paper and points out some future directions.
Appendix A gives the proofs of the theorems and heuristic that appear in the paper.

2 Problem formulation

In this section, we first review the basics of Bloom filters, and then formulate the
problem of preserving privacy in association rule mining with Bloom filters.

2.1 Bloom filter revisited

A Bloom filter is a simple, space-efficient, randomized data structure for representing
a set of objects so as to support membership queries.

Definition 2.1 Given an n-element set S = {5y, ..., s,} and k hash functions A, ...,
hy of range m, the Bloom filter of S, denoted as B(S), is a binary vector of length
m that is constructed by the following steps: (i) every bit is initially set to zero; (ii)
every element s € S is hashed into the bit vector through the k& hash functions, and

@ Springer

258 J Intell Inf Syst (2007) 29:253-278

the corresponding bits £;(s) are set! to one. A Bloom filter function, denoted as B(-),
is a mapping from a set (not necessarily n-element set) to its Bloom filter.

For membership queries, i.e., whether an item x € S, we hash x to the Bloom filter
of § (through those hash functions) and check whether all /;(x) are 1s. If not, then
clearly x is not a member of S. If yes, we say x is in S although this could be wrong
with some probability.

Definition 2.2 For an element s and a set S, define s € S if s hashes to all 1s in the
Bloom filter of S, and s ¢ 5 S otherwise. The false positive rate of the Bloom filter of
S is defined as the probability of s e Swhiles ¢ S,orPr(s ep S|s ¢ S).

Assume that all hash functions are perfectly random. We have the following

Lemma 2.3 Given an n-element set S = {s1,...,s,} and its Bloom filter B(S) of
length m constructed from k hash functions, the probability for a specific bit in B(S)

being 0 is
1 kn
(1= = ~ e—kn/m
m=(1-3)

and the probability for a specific bit being 1 is

pr=1=po~1—em
Then the false positive rate of B(S) is
_ k
f=pi~ (1 —emm) 1)

Given n and m, one can minimize the false positive rate f by choosing k = 7' In2, in
which case py = p; = 0.5and f = 0.5 = (0.6185)"/".

Keyed Bloom Filter To preserve the privacy of Bloom filters, we augment the hash
functions h; with a secret key K. To represent set S, an element s € § is inserted
into Bloom filter B by setting the corresponding bits 4;(s||K) in B to one, where ||
represents concatenation. Also, to query whether an item x € S, we check whether
all &;(x|| K) bits are set to 1. Without knowing the secret key, one is not able to know
which set is represented by examining a Bloom filter only. Without further mention
we always assume that Bloom filters are constructed with a secret key.

2.2 Our problem

For market basket data, we define each transaction, such as a list of items purchased,
as a subset of all possible items.

Definition 2.4 Let Z = {I;, ..., I;} be a set of d boolean variables called items. Let
database D be a set of transactions T, T, ..., Ty where each transaction 7; is a set

! A location can be set to 1 multiple times, but only the first change has an effect.

@ Springer

J Intell Inf Syst (2007) 29:253-278 259

of items such that 7; € 7. The support of an itemset S over Z, denoted support(S), is
defined as the number of the transactions that contain S. The frequency of an itemset
S, denoted freq(S), is defined as support(S)/N.

Problem 1 Frequent Itemsets Mining Given a transaction database D over Z and a
threshold t € [0, 1], find all frequent itemsets FS € 27 such that freq(FS) > t.

The frequent itemset mining has been a common task in many data mining
projects for the past decade. From frequent itemsets, one can easily derive all
associate rules (Agrawal & Srikant, 1994) of the kind if A, then likely B where A, B
are frequent itemsets. The mining of frequent itemsets of association rules has a wide
range of applications in many areas, from the analysis of customer preferences to
DNA patterns.

Our idea is to transform transaction database to a collection of Bloom filters
to preserve the privacy in frequent itemset mining. Each transaction T; € 7 is
transformed to Bloom filter B(T;) of size m using k hash functions. To preserve the
privacy of items /;, we assume that the mining process is done on the (keyed) Bloom
filters B(I;) of the items rather than on the items themselves.

Problem 2 Privacy Preserving Frequent Itemsets Mining Given (i) a collection of
Bloom ﬁlters{B(Tl), e B(TN)} for transaction database D over Z, (ii) a set of
Bloom filters { B(I)), ..., B(Iy)} for items in Z, and (iii) a threshold t € [0, 1], find
all Bloom filters B(FS) of itemsets FS € 27 such that freq(FS) > .

The data mining task can be performed on an edge server where the database is
outsourced. The edge server is provided with Bloom filters for performing the data
mining task. As mentioned earlier in Subsection 1.1, our primary goal of privacy
preserving is to prevent an adversary (possibly an edge server) from obtaining
sensitive data from public data (Kantarcioglu et al., 2004). This goal can be achieved
by Bloom filters which satisfy simultaneously the following three conditions. First,
transactions containing different numbers of items are mapped to Bloom filters with
the same length. This prevents an adversary from deciphering the compositions
of transactions by analyzing the lengths of Bloom filters. Second, Bloom filters
support membership queries. This allows authorized external parties (e.g., the edge
servers) to carry out data mining tasks with only Bloom filters (i.e., Bloom filters
of transactions and candidates of frequent itemsets). Third, without knowing all
individual items, it is difficult to identify each item from a transaction Bloom filter
by counting the numbers of 1s and 0s. This is because the probability of a bit in a
Bloom filter being 1 or 0 is 0.5 (Lemma 2.3) given that the parameters of a Bloom
filter satisfy k = * In2 as we have followed in this paper.

Some transactions may contain only one item. The number of 1s in these Bloom
filters are no more than but very close to k. Therefore, the outsourced database may
divulge partial individual items. To prevent such divulgence, one of the solutions is to
insert several virtual items as white noise to those transactions in which item numbers
are smaller than a threshold.

When a client sends mining requests, it has to send candidates of frequent k-
itemsets to an edge server at the same time (see Section 4 for detailed mining
process). Candidates of frequent 1-itemsets are exactly individual items. To prevent

@ Springer

260 J Intell Inf Syst (2007) 29:253-278

from exposing them to edge servers, it is advisory not to outsource tasks of mining
frequent 1-itemsets. There is an alternative way to conceal individual items by
extending the usage of secret key discussed in the previous subsection. We first
insert several virtual items, denoted by ki, k», ..., k;, into all transactions and then
outsource them to the edge servers. At client side, each candidate of frequent
1-itemsets is inserted with a virtual item randomly chosen from k; to k;. Thus the
edge servers cannot easily identify candidates of frequent 1- and 2-itemsets because
both types of candidates look alike. This method can be applied to conceal candidates
of frequent 2-, 3-, ..., and k-itemsets. Moreover, this operation can be done before
or after the mixing of white noise discussed in the previous paragraph.

3 Analysis

For any given itemset, the support (frequency) learnt from Bloom filters may be
greater than its real support (frequency) learnt from original transactions due to
the false positive of Bloom filters. We make this clear in the following analysis. By
default, we assume that for any itemset, there is a Bloom filter function B(-) which
produces binary vector of length m through k hash functions.

Definition 3.1 Given an itemset S and a transaction 7;, define S Cp T; if for all items
seS,s ep T;, and define S QB T; otherwise. The false positive rate for checking S
from the Bloom filter of 7}, denoted as f;, is defined as the probability of S € T;
while S 7¢_ Ti, or PI‘(S Cp Tl‘ | S SZ Tl)

Sometimes, we also use B(S) & B(T;) to represent S Cp 7;. Now we can define
the support and frequency that are learnt from Bloom filters.

Definition 3.2 Given a collection of N Bloom filters {B(Tl), . B(TN)} for trans-
action database D over Z, the support of an itemset S € 27 that is learnt from the
collection of filters,denoted as Bsupport(S), is defined as the number of filters B(7;)
that satisfy S Cp T;. The frequency of § that is learnt from the collection of filters,
denoted as Bfreq(S), is defined as Bsupport(S)/N.

From Definition 3.1, one can verify the following lemma which indicates that
Bsupport(S) can be computed from B(S) without § and that Bsupport(S) >
support(S) due to false positive.

Lemma 3.3 (i) S Cp T;iff B(S) A B(T;) = B(S), where A is bitwise AND. (ii) If S €
T;, then S Cp T;. (iii) If S g T;, then S Cp T; with probability f;, and S ,(ZB T; with
probability 1 — f;.

Theorem 3.4 Given an itemset S and a transaction T;, the false positive rate of
checking S from the Bloom filter of T; is

fi= (1 _ e*kn,/m)HB(S_Ti)”

where n; = |T;| is the length of transaction T;, and || - || indicates the number of 1s in a
binary vector.

@ Springer

J Intell Inf Syst (2007) 29:253-278 261

When S SZ T;, we define a random 0-1 variable ¢; =1 if S Cg T;, and ¢; = 0 if
S g p T;. The variable indicates whether S Cp T;. From Lemma 3.3, one can verify
that e; = 1 with probability f; and e; = 0 with probability 1 — f;. In other words, e;
represents an independent Bernoulli trial with probability f; of success. Its mean and
variances Ele;] = f; and Varle;] = fi(1 — f;), where we use E[-] and Var|[-] to denote
the mean and variance of any random variable, respectively.

From the previous discussion, we have

Bsupport(S) = support(S) + s,

where s, = Y.V PP £ if we assume that the first N — support(S) transactions do

not contain S.

Lemma 3.5 Given n random variables x;, ..., x,, we have E[x;+ ---x,]=
Elxi]+---+ ElxyJand Varlx; + -+ x,0 = Y7, E[(x,- — Elx])(x; — E[xj])]- If
X1,..., X, are independent, we have Var[x; + --- + x,] = Var[x|] + - - - + Var[x,].

From Lemma 3.5, one can derive

N—support(S)

Els)= Y fi=(N—supporis))f

i=1

N—support(S)

Visd= Y fd—£f

i=1

r 1 N—support(S) o
where f = N suppori(s) iz fi is average false positive rate for checking item-

set § from transactions. By choosing the optimal hash function number k = 7 In2,
one can estimate f ~ 0.5/8®1l (see Appendix B).

Lemma 3.6 [Chernoff bound (Chernoff, 1952; Hoeffding, 1963)] Let X1, ..., X, be
independent 0-1 random variables with Pr(X; = 1) = p;. Let X =)", X;, u = E[X]
and p = u/n. Thenfor0 < A <n — pu,

Pr(X > p+x) < ()

Pr(X < p— 1) < e (i=rtl)

where H,(x) = xIn(2) + (1 —x)In (g) is the relative entropy of x w.r.t. p.

X

@ Springer

262 J Intell Inf Syst (2007) 29:253-278

Theorem 3.7 Let 1 = Eles], min_sup = tN, and § = | Bsupport(S) — u — min_sup|.
If Bsupport(S)> min_sup + u, then support(S) > min_sup with probability at least
1 — €y, otherwisesupport(S) < min_sup with probability at least 1 — €,, where

€ = e(N—support(S)).Hf(fﬁ—m)

€ = e(N—support(S)).HP&l—f-ﬁ—%)

Note that Chernoff bounds are not always very tight. Exact probabilities or tighter
bounds can be computed from the binomial distribution or its normal approximation
in practice.

Solution to problem 2 Given a Bloom filter of an itemset S and a collection of Bloom
filters of transactions {B(Ti)}, one can easily compute Bsupport(S) by checking B(S)
against {B(Ti)}. Let min_sup’ = min_sup + i be revised threshold. We consider S
“frequent” if Bsupport(S) = min_sup’, and output B(S) for problem 2. According to
Theorem 3.7, €; is the upper bound of the probability that S is actually not frequent.
We thus call €, false frequent rate. Similarly, we call €, false infrequent rate which is
the upper bound of the probability that an “infrequent” itemset (i.e., Bsupport(S) <
min_sup') is actually frequent. For convenience, both €, and ¢; are called error rates.
The error rates increase with f and decrease with 4.

In practice, one can choose smaller f to decrease both error rates. One can also
change min_sup’ to tradeoff between the error rates. If the false infrequent rate is of
main concern, one can lower the revised threshold by § such that the false infrequent
rate is less than a predetermined threshold €, where § is the solution to €; = €. In
this case, fewer frequent itemsets will be missed as the false infrequent rate is less
than €. On the other hand, however, there could be more infrequent itemsets that
are included in the mining result.

4 Our method

A framework of our method for mining frequent itemsets with Bloom filters is shown
in Algorithm 1. Algorithm 1 can be divided into three phases: counting phase (lines
3-5), pruning phase (lines 6-10), and candidates generating phase (lines 11-12). In
the following, we present our method phase by phase. In particular, we study various
techniques so as to improve the efficiency of our algorithm, and study how to extend
our method so that it can be more flexible in practice.

4.1 Counting phase

In the counting phase (lines 3-5 in Algorithm 1), each candidate filter is checked
against all transaction filters and the candidate’s count is updated. A straightforward
method is to check each combination of candidate filter and transaction filter in a
brute force manner. However, this method may not be efficient.

To improve the efficiency, we organize the candidate Bloom filters in a tree
hierarchy and use every g bits to partition them at different levels, where ¢ is a
parameter. For example, at the root level, the partition leads to 29 child nodes; the

@ Springer

J Intell Inf Syst (2007) 29:253-278 263

Algorithm 1 Mining frequent itemsets with Bloom filters
1: Ci ={BU)), ..., By} /I B(I;) is the Bloom filter of item I;
2: for (£ =1, Cy # &; £++) do
3. for each B(S) € C,; and each transaction filter B(7;) do

4 if B(S) T B(T;) then Bsupport(S) ++ // B(S) C B(T;) iff B(S) A B(T;) = B(S)
S end for
6: for each B(S) € C; do
7. F =058l
8 min_sup’ = min_sup + u = (N — Bsupport(S))lfff, see below
9: if Bsupport(S) < min_sup’ then delete B(S) from C;
10: end for
11: F,=Cy /I Fy is the collection of Bloom filters of all “frequent” itemsets with

length ¢
12: Cyy1 = can_gen(Fy) [/ generate filters of candidate itemsets for the next round
13: end for
14: Answer =, F¢ /I all filters of frequent itemsets

Bloom filters in each node share the same first g bits. A node splits if it contains more
than ¢ Bloom filters, where c is another parameter. At the end of partition, each leaf
node contains limited number of Bloom filters, while each non-leaf node (except the
root) is associated with a g-bit segment by which the node splits.

Because of the randomness of keyed hash functions, the distribution of Bloom
filters is uniform, which implies that the tree is well balanced. Therefore, an L-level
tree can be used to index up to ¢ - 29" candidate Bloom filters. Given g = 5 and
¢ = 20, for example, a 4-level tree can be used to index 20M Bloom filters.

Heuristic 4.1 Let s be the g-bit segment associated with a non-leaf note and B(7;) be
a transaction Bloom filter. If any bit in s is 1 while the corresponding bit in B(T;) is
0, then no Bloom filter in the subtree from the non-leaf node needs to be checked in
the counting phase.

In the counting phase, we traverse the tree to compare each transaction filter with
candidate Bloom filters (stored in leaf nodes) and update their counts. According to
the above heuristic, we can skip many subtrees in the process.

An alternative way to do this is to organize transaction filters in a tree structure
and update their counts appropriately while traversing the tree for each candidate
filter.

4.2 Pruning phase

In the pruning phase (lines 6-10 in Algorithm 1), any Bloom filter is eliminated
from the candidate set if its count (i.e., Bsupport) is less than the revised threshold.
According to Section 3, the revised threshold is min_sup’ = min_sup + n, where
w= (N — support(S)) f. Since support(S) is unknown in data mining, we solve it by
replacing support(S) with Bsupport(S) — p, and derive u = (N — Bsupport(S))l%f-.
The revised threshold is computed for each candidate Bloom filter.

@ Springer

264 J Intell Inf Syst (2007) 29:253-278

4.3 Candidates generating phase

With counting phase and pruning phase alone, our algorithm can discover all Bloom
filters of frequent itemsets from any given set of Bloom filters (not necessarily
Bloom filters of single items). This can be done with one step interaction between
client and server—the client generates a set of candidate Bloom filters C; and sends
it to the server; after data mining, the server returns the result F, to the client. The
client can easily recover all frequent itemsets from those Bloom filters. This one step
interaction is useful in some application scenarios. As mentioned in Subsection 2.2,
with C; (i.e., Bloom filters of individual items) an edge server may decipher partial
sensitive data (e.g., the compositions of transactions). Therefore, for privacy preserv-
ing concern, it is advisory not to outsource frequent 1-itemset mining tasks. Also, an
alternative choice of concealing C; has been discussed in Subsection 2.2.

To support interactive data mining and discover all frequent itemsets as required
in Problem 2, a multiple step interaction is conducted between client and server. The
client provides the server with a set of candidate filters C;; after the server sends back
the mining result F,, the client generates another set Cy;; of candidate filters from
F, and sends it to the server for data mining. This process can be done repetitively.

The candidate generation C,y; = can_gen(F,) at client side is conducted in the
following steps for privacy reason. First the Bloom filters in F, are transferred back
to itemsets. This can be done by maintaining and following a one-to-one mapping
between each Bloom filter in C, and its corresponding itemset (note that F, is a
subset of C,). From the collection of all itemsets, the client generates a new set of
candidate itemsets using apriori_gen as proposed in Agrawal and Srikant (1994). The
basic idea of apriori_gen is that a candidate itemset of length £ + 1 is generated only if
all its subsets of length ¢ appear in the collection of itemsets. The client may also edit
the set of candidate itemsets according to application requirements and constraints.
Finally, the client transfers the candidate itemsets to Bloom filters and sends them
back (in C,41) to the server. All of our experiments presented in the next section are
based on this scenario.

Due to false positive, an itemset S transferred from Bloom filter B(S) could be
a superset of the real frequent itemset? that corresponds to the same Bloom filter
B(S) (one can choose longer Bloom filters so as to make S close enough to the
set of real frequent itemsets). Fortunately, S is not a proper subset of the set of
real frequent itemsets. Therefore, no real frequent itemsets are missed out in the
candidate generation for the next round.

Another choice to perform candidate generation is at server side. However, the
server has no secret key to perform the hash functions, so it cannot transfer back
and forth between Bloom filters and itemsets. A possible solution is to use Cyy1=
{B(S1) Vv B(S2) : B(S)), B(S,) € F;} as candidate set for the next round,where Vv
represents bitwise OR. It is easy to verify that B(S;) v B(S;) is the Bloom filter of
itemset S; U S;; therefore, this solution generates all Bloom filters of itemsets that
are unions of any two frequent itemsets (clearly, no frequent itemset is missed in this
process). The disadvantage of this solution is that the server cannot exploit Apriori
property (using apriori_gen) at itemset level.

2By real frequent itemset we mean its support is no less than min_sup.

@ Springer

J Intell Inf Syst (2007) 29:253-278 265

4.4 Extension

The method we discussed above is applicable to the case in which all transactions
are represented by Bloom filters with the same length (e.g., all are 640-bit). It can
be extended to the case in which transactions are represented by Bloom filters with
several different lengths.

In some applications, the dataset contains both big size transactions (e.g., con-
taining 200 items) and small size transactions (e.g., containing two or three items).
To save storage space, we use long Bloom filters (e.g., 640-bit) to represent big size
transactions and short Bloom filters (e.g., 64-bit) to represent small size transactions.
Thus the Bloom filters of transactions are classified into two groups based on their
lengths. Note that only the counting phase needs to be revised during the mining
process. We need to execute counting operations for a small group of Bloom filters
(e.g., long Bloom filters), then accumulate the results for the other groups of Bloom
filters, and finally execute pruning phase and candidate generating phase.

In order to reduce the communication bandwidth between edge servers and
clients, we propose §-folding technique so that edge servers can generate candidate
Bloom filters of different lengths by themselves. The details are given in the next
section. Our experiments on real data show that, the extended method achieves not
only significantly high rates of storage saving (over 75% in the best case), but also
the same mining precision as well as comparable performance.

5 Experiments

To assess the relative performance of our Bloom filter method (BF for short) against
Apriori method for discovering frequent itemsets, we conduct experiments on both
synthetic data and real data. All the experiments are run on an IBM ThinkPad T40
laptop computer with a Pentium M processor (CPU) clock rate of 1.5 GHz, 1.0 GB
of RAM and 40 GB hard disk, running Microsoft Windows XP with SP2.

Let F be the set of frequent itemsets obtained by Apriori and F’ by BF. Define
E, = F' \ F be the set of positive errors, and E, = F \. F’ be the set of negative
errors. In other words, £, contains the item sets overly found by BF, whereas E,
contains the itemsets missed out by BF as compared with the mining results of
Apriori.

As aforementioned, our BF method may incur some unexpected itemsets or miss
out some itemsets in the mining results. In what follows, we compare our results with
the correct results obtained by Apriori.

5.1 On synthetic data

In synthetic data experiments, we investigate the following aspects: (1) mining
precision, (2) scalability in terms of running time, and (3) flexibility of storage
requirement.

We generate synthetic data using the transaction generator designed by IBM
Quest project (Agrawal & Srikant, 1994). A synthetic dataset contains 100K to 1M
transactions; each transaction is generated from a set of 1,000 frequent itemsets.
The size of each frequent itemset is picked from Poisson distribution with mean 4.

@ Springer

266 J Intell Inf Syst (2007) 29:253-278

Table 1 Characteristics of synthetic datasets

Dataset NV; Distinct T Ta Numbers (and percentage) of transactions with size
items

1-10 11-20 21-30 > 30

Syn-1 100K 1,000 31 1001 58272 (583%) 41,586 (41.6%) 141(0.1%) 1(0%)
Syn2 250K 1,000 27 10.00 145,768 (58.3%) 103,826 (41.5%) 406 (0.2%) 0 (0%)
Syn3 500K 1,000 30 10.00 291,529 (58.3%) 207,704 (41.5%) 767 (0.2%) 0 (0%)
Syn-4 750K 1,000 28 10.00 437,372 (58.3%) 311,431 (41.5%) 1,197 (0.2%) 0 (0%)
Syn5 1M 1,000 29 10.00 583,529 (58.3%) 414,912 (41.5%) 1,559 (0.2%) 0 (0%)

There are totally 1,000 distinct items. The size of each transaction is picked from
Poisson distribution with mean 10. We use five sets of synthetic data, namely Syn-1,
Syn-2, ..., Syn-5. Table 1 shows the characteristics of the synthetic datasets, where N,
denotes the number of transactions in the dataset, 7, and T, denote the maximum
size and average size of transactions, respectively.

Recall that adjusted threshold min_sup’ = min_sup + 1 is used in data mining
process. To be more flexible, we add a coefficient o before . Thus the adjustment
of minimum support becomes min_sup’ = min_sup + au. From our experimental
results, we observe no negative errors for ¢ = 0; this is consistent with our theoretical
analysis in the previous sections. There is a tradeoff between the numbers of positive
and negative errors. In our experiments, we set 0 < « < 1 so as to avoid too many
negative errors.

5.1.1 Precision

We examine the precision of BF method using sythetic dataset Syn-1. Recall that
k = % In2 (Lemma 2.3), where k denotes the number of hash functions, m the length
of Bloom filter, and n the number of elements in a set. We choose m = 320, n = 10
(thus k = 22).

Table 2 shows the performance in terms of the number of frequent ¢-itemsets
discovered by Apriori and the negative and positive errors of BF. The minimum
support varies from 0.25 to 1.50%. In the table, the negative and positive errors
are delimited by a comma. Symbol “~” means zero (i.e., no frequent ¢-itemsets are
found).

We use positive (negative resp.) error rate to measure the relative precision. The
error rate is defined as follows:

positive errors | E,| (negative errors | E,| resp.)

100%.
number of frequent itemsets discovered by Apriori ’

From Table 2, we have the following findings:

(1) There are no negative errors at « = 0, while a few negative errors (less than 3)
occur in five cases where o = 1.

(2) We achieve high precision of mining results. The positive error rates are no
more than 3%.

(3) The adjustment of minimum support threshold slightly affects the mining
precision. The positive error at o = 0 is slightly greater than that at « = 1.

@ Springer

J Intell Inf Syst (2007) 29:253-278 267

Table 2 (negative, positive) errors where m = 320,n = 10 and k = 22

Min- Number of frequent ¢-itemsets obtained by Apriori,
support Method and (negative, positive) errors by BF
1 2 3 4 5 6 7 8 Total
Apriori 781 1,893 1,574 1,047 522 182 47 6 6,052
0.25% BFe=0 0,22 0,12 0,1 0,0 0,5 0,0 00 0,0 0,40
BFe=1 0,22 3,11 3,0 0,0 0,5 0,0 00 0,0 6,38
Apriori 639 746 492 193 40 2 - - 2,112
0.50% BFe=0 0,17 0,6 0,0 0,1 0,0 0,0 - - 0,24
BFe=1 0,17 2,5 1,0 0,1 0,0 0,0 - - 3,23
Apriori 518 309 136 45 9 1 - - 1,018
0.75% BFe=0 0,16 0,3 0,0 0,0 0,0 0,0 - - 0,19
BFa=1 0,15 2,2 0,0 0,0 0,0 0,0 - - 2,17
Apriori 396 114 42 13 2 - - - 567
1.00% BFe=0 0,13 0,1 0,0 0,0 0,0 - - - 0,14
BFe=1 0,12 0,1 0,0 0,0 0,0 - - - 0,13
Apriori 225 28 20 4 - - - - 271
1.50% BFe=0 0,10 0,0 0,0 0,0 - - - - 0,10
BFa=1 0,10 0,0 0,0 0,0 - - - - 0,10

The occurrence of negative errors at « = 1 is caused by the revision of minimum
support threshold. According to the third finding in the above, we can simplify our
method by setting « = 0 in the following experiments.This guarantees no missing of
frequent itemsets, and only incurs a small number of positive errors.

5.1.2 Scalability

We examine the scalability of our method in terms of precision and running time. All
five datasets given in Table 1 are used in this experiment. We set minimum support

Table 3 Positive errors where « = 0 and min-support = 0.75%

Number of frequent £-itemsets obtained

Dataset Transactions by Apriori, and positive errors by BF
1 2 3 4 5 6 7 Total
16 3 0 0 0 0 19
1 100K = = 2 2 2 > - 2
Syn 00 518 309 136 45 9 1 1,018
12 2 0 0 0o 0 14
Syn-2 250K — — — — — - -
532 313 47 70 29 8 1 1, 100
1 1 0 0 0 12
- K — _ - — Z _ _ il
Syn-3 500 540 278 115 39 6 978
14 0 0 0 0 14
Syn-4 750K — — — — - - -
515 319 145 5 1,027
16 1 0 0 18
Syn-5 M - - - 2 2 2 _ =
52 287 120 56 9 3 1,027

@ Springer

268 J Intell Inf Syst (2007) 29:253-278

Fig.2 Trend of running time

Running time (time units)

100 250 500 750 1000

Number of transactions (K)

t0 0.75%, let « = 0, and retain other parameters (i.e., m = 320, n = 10, and k = 22).
The experimental results are shown in Table 3.

In each cell of Table 3, the denominator denotes the number of frequent £-itemsets
obtained by Apriori, whereas the numerator denotes positive errors by BF method.

The table shows that the positive error rate is no more than 2%. One may claim
that the precision of mining is stable when we scale up the number of transactions.

The reason of this stability is that all five datasets are consistently generated by
the same generator with the same set of parameters. The parameters of Bloom filter
(i.e., n, m, and k) are optimally chosen such that the errors can be minimized.

Figure 2 illustrates the relative running time w.r.t. the transaction number which
corresponds to each synthetic dataset. It shows a linear trend of running time when
we scale up the number of transactions.

The running time is in the order of tens of minutes, which is nearly 70 times of
that by Apriori. The reason is that, in the counting phase (lines 3-5 in Algorithm 1),
a transaction Bloom filter has to be compared with all candidates at certain level of
the candidate hash-tree (the candidates to be compared each time is as many as c - 24
as mentioned in Subsection 4.1); whereas in Apriori, a transaction is directly mapped
by a hash function such that it only needs to be compared with several candidates at
certain level of the candidate hash-tree.

Compared with Apriori, our BF method sacrifices some running time so as to fully
preserve data privacy. Nonetheless,the mining time is still acceptable. Note that we
use a laptop in our experiments; in real application scenarios, the data mining task
would be performed by edge servers which are much more powerful than our laptop.

5.1.3 Flexibility of storage requirement

Now we conduct experiments to investigate the relationship between error rate and
length of Bloom filter. In this experiment, we use dataset Syn-1, and let minimum
support be 0.75% and « = 0. Since the average size of transactions # is fixed to 10,
we vary the Bloom filter length m from 224 bits to 416 bits, and accordingly the Hash
function number k from 16 to 29 given the relationship k = 7 In 2.

Table 4 shows our experimental results on positive errors. In the table, Lgr
indicates the length of Bloom filters measured in bits, and Ny indicates the corre-
sponding number of hash functions. For relative comparison, we also list the numbers
of frequent ¢-itemsets obtained by Apriori in the third row of the table.

@ Springer

J Intell Inf Syst (2007) 29:253-278 269

Table 4 Positive errors for

dataset Syn-1 where o = 0 Lgr Nu Frequent £-itemsets
and min-support= 0.75% (bits)
1 2 3 4 5 6 Total
Apriori 518 309 136 45 9 1 1,018
224 16 124 72 4 0 0 0 200
256 18 78 13 0 0 0 o0 91
288 20 38 5 0 0 0 o0 43
320 22 16 3 0 0 0 0 19
352 24 10 2 0 0 0 o0 12
384 27 5 0 0 0 0 0 5
416 29 2 0 0 0 0 0 2

Table 4 shows that the positive error decreases with Bloom filter length: 200 errors
(error rate 19.6%) for 224 bits Bloom filters, 19 errors (error rate is 1.9%) for 320 bits
Bloom filters, and 2 errors (error rate ~ 0%) for 320 bits Bloom filters.

The above results demonstrate that more storage space is required to achieve low
error rates. A tradeoff between Bloom filter length and error rate can be explored
in practice.

An interesting finding is that there are few errors for frequent itemsets whose
lengths are greater than two. If clients are interested in mining such frequent itemsets
or verifying whether some such itemsets are frequent, they can use relatively short
Bloom filters as long as the demand on mining precision is met. By doing so, one can
further save storage space.

Discussion. Our BF method is flexible in terms of storage requirement. It provides a
tradeoff between storage requirement and the mining errors that we can tolerate in
real applications. Normally, each transaction is stored as a series of items represented
by integers. In our experiments, the mean size of transactions is ten. Thus on average
a transaction requires 40 bytes if an integer is stored by 4 bytes. With our BF
method, a transaction is represented by one Bloom filter regardless transaction size.
Therefore, if 256-bit Bloom filters are used, one can save 20% storage space with
error rate 9.0%; whereas 288-bit Bloom filters are used, 10% storage space is saved
with error rate 4.2%. However, this does not mean that one can eliminate errors by
increasing the length of Bloom filters. This issue will be addressed in the next section.

5.2 On real data

In real data experiments, we investigate: (1) the mining precision and the limitation
of our original BF method, (2)the improved method for increasing mining precision,
and (3) the technique for saving more storage space.

The real datasets we adopt are BMS-POS, BMS-WebView-1, and BMS-
WebView-2.3 The dataset BMS-POS contains several years worth of point-of-sale
data from a large electronics retailer, whereas the datasets BMS-WebView-1 and

3They are downloadable at http://www.ecn.purdue.edu/KDDCUP.
@ Springer

http://www.ecn.purdue.edu/KDDCUP

270 J Intell Inf Syst (2007) 29:253-278

Table 5 Characteristics of real datasets

Dataset Distinct Max-size Aver-size = Numbers (percentage) of transactions with size
items
T T >1 1-10 11-20 2130 > 30
BMS-POS 1,657 164 6.53 515,597 421,113 71,617 16,544 6,323
81.7% 13.0% 32% 1.2%
BMS- 497 267 2.51 59,602 58,239 1,043 186 134
WebView-1 97.7% 1.7% 0.3% 0.2%
BMS- 3,340 161 4.62 77,512 69,678 5,840 1,035 689
WebView-2 89.9% 7.5% 1.3% 0.9%

BMS-WebView-2 contain several months worth of click stream data from two e-
commerce websites (Zheng, Kohavi, & Mason, 2001). In these real datasets, the
transaction size follows exponential distribution. Table 5 shows the characteristics
of the real data, where 7, and 7, indicate the maximum size and average size of
transactions, respectively.

Three sets of experiments are conducted. The first set of experiments is the basic
experiments. We directly apply the method as used in synthetic data experiments.
The parameters k& (number of hash functions), m (length of Bloom filters), and n
(average size of transactions, as shown in Table 5) are determined by k = % In 2. Our
first set of experiments shows a decreasing trend of error rates with the length of
Bloom filters. However, the error rates cannot be below 12% even with very long
Bloom filters (960 bits).

In the second set of experiments, we improve our approach by introducing a new
concept called virtual average size of transactions. The results show that we can
achieve very low error rates (below 2%) with 640-bit Bloom filters.

In the third set of experiments, we propose a §-folding technique to further reduce
storage requirement. We can save at most 75% storage while keeping the error rates
below 2%. Moreover, we save over half of running time in the best case in which the
storage saving rates are close to the summit.

We use minimum support threshold =0.75% and o« =0 for all three sets of
experiments.

5.2.1 Basic experiment

In this set of experiments, we directly apply our approach as used in synthetic data
experiments. We vary the length of Bloom filters from 480 bits to 960 bits. We
measure the error rate ¢, which is defined as follows:

> (IE,| + | E,|) of freqent ¢-itemsets by BF method
=1

= 100%.
¢ > number of frequent ¢-itemsets by Apriori * ’

=1

Figure 3 shows the decreasing trend of error rates with the length of Bloom filters.
The figure illustrates that even with 960 bits, the error rates are still greater than 12%.
The high error rates are due to a larger portion of transactions whose sizes are
much more greater than the average size (see Fig. 4 which gives the distribution
of transaction size for both synthetic and real datasets). For synthetic datasets, the

@ Springer

J Intell Inf Syst (2007) 29:253-278 271

100
¥ 80 .
e 60 —e—BMS-POS: n = 6.53
E 40 —8— BMS-WebView-1: n = 2.51
§ —aA— BMS-WebView-2: n = 4.62
5 20
0

480 640 800 960
Bloom filter length (bits)

Fig. 3 Error rate w.r.t. Bloom filter length

transaction size follows a Poisson distribution; over 99.8% of transactions have sizes
between 1-20; less than 0.2% of transactions have sizes greater than 20 (see Table 1).
For real datasets, the transaction size follows exponential distributions, relatively
more transactions have sizes much greater than the average size (see Fig. 4 and
Table 5). If such transactions are represented by Bloom filters, the number of 1s in
a Bloom filter would greatly exceed the optimal value which is the half of the length
of Bloom filters. This will increase the false positive rate in data mining from Bloom
filters.

5.2.2 Improvement

To decrease the error rates, we introduce the concept of virtual average size of
transactions. The virtual average size of transactions is the parameter n used in
our data mining algorithm which may or may not be the “real” average size of
transactions. Given virtual average size n, parameters k and m are still determined
by k= 21n2.

Given a dataset, one can increase the virtual average size n so as to increase
the mining precision. Figure 5 shows the error rates for different Bloom filter
lengths (480-960 bits) and different virtual average size (n = 10, 20, 30). One can
find that the error rates are no more than 2% for n = 30 and m > 640. This is a
significant improvement compared with more than 12% error rates for up to 960 bits
Bloom filters without using the virtual average size (see Fig. 3). In the next set of
experiments, we generalize this method and try to save more storage space.

Fig. 4 Distribution of 100
transaction sizes = :
& Synthetic
g —=— BMS-POS
) —a— BMS-WebView-1
j’:_- —e— BMS-WebView-2

5 10 15 20 25 30 35 40

Transaction size

@ Springer

272 J Intell Inf Syst (2007) 29:253-278

BMS-POS BMS-WebView-1 BMS-WebView-2
16 \ 16 16 \

12 1 1

2 N\ 2 2 -

[Ny [[R

= b — e = \’\0\

S 4 S 4 S 4 ~<g

= . = . Q’_ & o N_ O
480 640 800 960 480 640 800 960 480 640 800 960

Bloom filter length (bits) Bloom filter length (bits) Bloom filter length (bits)

Fig. 5 Error rate w.r.t. Bloom filter length where n = 10, 20, 30

5.2.3 Storage saving

Looking into the distribution of transaction size (see Table 5), we find that few
transactions have lengths greater than 30. This enlightens us to use shorter Bloom
filters for small size transactions so as to save storage space. A simple way to
achieve this is to categorize transactions into several clusters based on their sizes
and generate Bloom filters separately for each cluster. However, this could increase
communication costs between edge servers and clients. In our original solution, each
time edge servers perform data mining on certain cluster, clients need to provide the
servers with corresponding Bloom filters. To avoid transmitting different lengths of
Bloom filters,only the longest Bloom filters of candidate itemsets are sent to edge
servers at one time. Edges servers can convert these long Bloom filters to shorter
ones when performing the mining process for different clusters.

In the following, we first provide a simple solution called §-folding for converting
Bloom filters, then we show how to use §-folding in data mining process.

(1) 8-folding For convenience, let bit(B, i) be the i"-bit of Bloom filter B (0 < i <
m), and V be bitwise OR. Assume that dm is an integer where 0 < § < 1.

Definition 5.1 [§-folding] Given an m-bit Bloom filter B, §-folding of B, denoted as
Bs, is defined as a §m-bit Bloom filter generated from B: for 0 < i < ém, bit(Bs, i) =
bit(B,i)\/ o-j<m Dit(B,).

j=i mod 5m

Jj=i mo

Consider a 10-bit Bloom filter B. By is defined as bit(B7,) =bit(B, i) Vv bit(B, i+
7)fori=1,2,3,and bit(By7,i) = bit(B,i) fori =4,5,6,7.

From the above definition, it is obvious that B; is a Bloom filter that is gener-
ated with the same hash functions that are used for generating B. Recall kK = %-In2
(Lemma 2.3). With k unchanged, the virtual average size of transactions correspond-
ing to B; is én and the length of Bj is ém.

(2) Mining Process Now consider a simple case in which data are partitioned into
two groups. Note that it is straightforward to generalize it to multiple group case
(e.g., using clustering methods). Group 1 contains transactions whose sizes are greater
than §n and Group 2 contains other transactions, where § is a parameter chosen to
minimize the storage requirement. All transactions are firstly converted to Bloom
filters of m bits long. Then §-folding is applied to the Bloom filters of transactions in
Group 2. As result, the outsourced database contains Bloom filters in two formats
(m-bits and Sm-bits). In mining process, clients send long Bloom filters (in m bits

@ Springer

J Intell Inf Syst (2007) 29:253-278 273

Fig. 6 Error rate of §-folding 3

where m = 640 and n = 30
e

—=— BMS-WebView-1
B —a— BMS-WebView-2

Error rate (%)

0.1 02 03 04 05 06 07 1

& -folding of transactions

format) of candidate itemsets to edge servers. When edge servers process transac-
tions in dm-bit format, they apply §-folding to all candidate Bloom filters so that the
candidate Bloom filters have the same length as transaction Bloom filters.

With different formats of Bloom filters, the mining process is the same as our orig-
inal algorithm except the counting phase. In the counting phase, candidate Bloom
filters are checked first against transactions in a small group. Then the counting
process moves to a large group where the frequencies obtained in the first group
are accumulated and used as initial values.

(3) Experimental Results We have the following conclusions from our experiments in
which §-folding technique is applied: (a) no increasing of error rates, (b) significantly
high rates of storage saving, (c) saving of over 50% running time in the best case, and
requiring of nearly 70% extra running time in the worst case.

Figure 6 gives the experimental results for m = 640 and n = 30. For comparison,
the figure also shows the error rates of 1-folding (i.e., no partition in data mining as
shown in Fig. 5). It is clear that, with §-folding, we achieve almost the same error
rates (as low as 2%) for all three datasets as compared with the previous experiment.

More interestingly, we can save storage space significantly without degrading the
mining precision. Figure 7 shows that the highest saving rates are reached at 0.2-
or 0.3-folding. Saved storage space are over 75% of BMS-WebView-1 data, nearly
65% of BMS-WebView-2 data at 0.2-folding, and over 55% of BMS-POS data at
0.3-folding. The storage saving rate is defined as

storage requirement with 1-folding — storage requirement with §-folding
storage requirement with 1-folding (no partition in data mining)

x 100%.

Fig. 7 Storage saving rate

w.r.t. §-folding 80

60 1 —e—BMS-POS

40 - —=— BMS-WebView-1
—a— BMS-WebView-2

20

Stroage saving rate (%)

0.1 02 03 04 05 06 0.7 1
& -folding of transactions

@ Springer

274 J Intell Inf Syst (2007) 29:253-278

Fig. 8 Relative running time
w.r.t. §-folding

—e—BMS-POS
—=— BMS-WebView-1
—aA— BMS-WebView-2

Relative running time

0.1 02 03 04 05 06 07 1

& -folding of transactions

The change of saving rates are due to two factors. The first factor is the proportion
of transactions which are represented by Bloom filters with §-folding. The second
factor is 8 which determines the length of Bloom filters with §-folding. For BMS-
WebView-1 and BMS-WebView-2, the sizes of most transactions are less than six.
The highest saving rate is achieved at 0.2-folding in which case data are partitioned at
threshold six and most transactions are represented by short Bloom filters of 128 bits.
For BMS-POS, the average transaction size is 6.53; there are still a lot of transactions
whose sizes are greater than six. The highest saving rate is thus reached at 0.3-folding.

Let the running time of 1-folding be 1. Figure 8 shows the relative running time of
3-folding compared with 1-folding. The figure illustrates that §-folding saves over half
of running time in the best case and requires nearly 70% extra time in the worst case.
When § =0.1, 0.2 and 0.4, the running time is close to 0.5. In general, the running
time of §-folding is comparable to 1-folding (i.e., no partition of data in mining).
One reason behind this is that after §-folding, some transactions are represented
by shorter Bloom filters. This could reduce the time of data fetching. On the other
hand, with §-folding, the hash-tree of candidates is generated twice in the counting
phase (for different groups of transactions). This may require some extra time in data
mining process.

6 Conclusions

We have proposed an approach for preserving privacy in association rule mining.
The main idea of our method is to use keyed Bloom filters to represent transactions
as well as data items so as to preserve privacy. We have also proposed a §-folding
technique to save storage requirement.

Our approach is different from previous solutions in that it can fully preserve
data privacy while maintaining the precision of mining results. It can also be used
to explore the tradeoff between mining precision and storage requirement. Rigorous
experiments show that our approach can save storage requirement significantly with-
out sacrificing much mining precision and running time.

In the future, we plan to study privacy preserving approaches to mining specific
types of frequent itemsets, such as maximum itemsets and closed itemsets. It is also
a parallel direction to study the robustness of Bloom filter method against attacks
especially from a viewpoint of cryptography.

Appendix A: Proofs
Proof of Theorem 3.4. From Eq. 1, one can derive that the false positive rate for

checking any single item s € S — 7 is pf, where p; = (1 — e7*"/™) is the probability
@ Springer

J Intell Inf Syst (2007) 29:253-278 275

that a specific bitis 1 in B(7};) and k is the number of bits to which the item is hashed.
From Lemma 3.3, we know that S N 7; Cp T; for sure. Since all items in S — 7; are

hashed to ||B(S — T;)|| bits, the false positive rate* f; for checking S from B(T}) is
p|l|B<S—T,>|| =(1- e_kn,./m)HB(S—Ti)H. 0

Proof of Theorem 3.7. Recall that support(S) = Bsupport(S) —s. and s, is the
sum of N — support(S) 0-1 random variables with mean wu. If Bsupport(S) >
Ming,, + 1, then min_sup = Bsupport(S) —u —38 and thus Pr (support(S) >
min_sup) =Pr(s, <u+38) >1—¢€ according to Lemma 3.6, where ¢ =

— . 7 £ 7‘3
e(N S“””(’”(S)) Hf(f +N*“‘“/’f’°”“>). Similarly, if Bsupport(S) < min_sup+ u, then

min_sup = Bsupport(S) — p + § and thus Pr (support(S) < min_sup) =Pr(s, > u —
8) > 1 — €, where ¢y = e(Nfs”pport(S))‘H“f('7f+”*‘“"am). O
Proof of Heuristic 4.1. All Bloom filters in a subtree share the same segment s as

associated with the subtree’s root. If any bit in s is 1 while the corresponding bit in
B(T;) is 0, then B(S) A B(T;) # B(S) for any Bloom filter B(S) in the subtree. O

Appendix B: Estimate of false positive
Given Bloom filters B(S) and B(T;), in what follows we consider how to compute

false positive rate f; ~ (1 — e~kn/m) BT Note that [S| « d and |T;| < d in data
mining practice. If we model the composition of itemset S as random selection of

|S| items from 7 = {[}, - - - , I;}, then the probability that S and 7; share at least one
item is
[_d=ITl AT =1 d-|TI-|S -1
d d—1 d—|S]—1
Therefore, we estimate
fi v (1= ehonsm) 1B
1
Now consider the average false positive rate
1 N—support(S)
f=——"= fi
N — support(S)

i=1

In most data mining practice, we have support(S) < N, and thus f ~ % Zfil fi-
From linear Taylor expansions, it is easy to obtain

F o (1= etom) 1B

. . .) ~T; S
4One may consider to compute the false positive rate using (1- e~knil ’”)k‘s ‘, which is the product

of the false positive rate for checking each item in S — 7;. However, this method is not precisely
correct because the length of Bloom filter is limited, and some of the items in S — 7; may hash to
same bits (i.e., || B(S — T7)|| < k|S — Tj|); that is, checking each item of S — 7 is not an independent
event in computing the false positive rate.

@ Springer

276 J Intell Inf Syst (2007) 29:253-278

where n = iN Zfi | hi is the average transaction size. By choosing the optimal hash
function number k = 7 In2, one can further simplify the computation

F 05BN

Discussion. The original intention of the revision of minimum support threshold is
to increase the mining precision, especially to prevent some infrequent itemsets from
appearing in the results. The above estimate is to give a rough extent of this kind of
errors. Our experimental results (presented in Section 5) show that the revision of
minimum support threshold slightly affects the mining precision. That is, if we do not
apply the revision, there are only a few unexpected frequent itemsets appearing in
the mining results as compared with the case where the revision is applied. On the
other hand, with the revision some frequent itemsets may be missed out; however,
this situation does not happen for the case without revision.

Acknowledgments Work of Wu was supported in part by USA National Science Foundation Grant
CCR-0310974 and IIS-0546027. Thanks also go to the anonymous reviewers who provide helpful
comments on earlier versions of this paper.

References

Agrawal, D., & Aggarwal, C. C. (2001). On the design and quantification of privacy preserving data
mining algorithms. In Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, Santa Barbara, California (pp. 247-255).

Agrawal, R., Imilienski, T., & Swami, A. (1993). Mining association rules between sets of items in
large databases. In Proceedings of the ACM SIGMOD International Conference on Management
of Database (pp. 207-216). New York: ACM Press.

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2004). Order preserving encryption for numeric data.
In Proceedings of the ACM SIGMOD International Conference on Management of Database,
Paris, France (pp. 563-574).

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In
VLD B’94, Santiago, Chile (pp. 487-499).

Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Dallas, Texas (pp. 439-450).

Atallah, M., Bertino, E., Elmagarmid, A. K., Ibrahim, M., & Verykios, V. S. (1999). Disclosure
limitation of sensitive rules. In Proceedings of the IEEE Knowledge and Data Engineering
Exchange Workshop, Chicago, Illinois (pp. 45-52).

Bloom, B. (1970) Space time tradeoffs in hash coding with allowable errors. Communications of
theACM, 13(7), 422-426.

Border, A. Z., & Mitzenmacher, M. (2002). Network applications of bloom filters: A survey. In Pro-
ceedings of the 40th Annual Allerton Conference on Communication, Control, and Computing,
Urbana-Champaign, Illinois (pp. 636-646).

Chernoff, H. (1952). A measure of asymptotic efficiency for tests based on the sum of observations.
Annals of Mathematical Statistics, 23, 493-509.

Cohen, S., & Matias, Y. (2003). Spectral bloom filters. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Database, San Diego, California (pp. 241-252).

Dasseni, E., Verykios, V. S., Elmagarmid, A. K., & Bertino, E. (2001). Hiding association rules
by using confidence and support. In Proceedings of the 4th International Information Hiding
Workshop, Pittsburg, Pennsylvania (pp. 369-383).

@ Springer

J Intell Inf Syst (2007) 29:253-278 277

Du, W., & Atallah, M. J. (2001). Secure multi-party computation problems and their applications:
A review and open problems. In Proceedings of New Security Paradigms Workshop 2001,
Cloudcroft, New Mexico (pp. 11-20).

Du, W., & Zhan, Z. (2002). Building decision tree classifier on private data. In Proceedings of IEEE
ICDM’02 Workshop on Privacy, Security, and Data Mining, volume 14, Maebashi City, Japan
(pp. 1-8).

Evfimievski, A.,Srikant, R., Agrawal, R., & Gehrke, J. (2002). Privacy preserving mining of associ-
ation rules. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Edmonton, Canada (pp. 217-228).

Evfimievski, A., Gehrke, J., & Srikant, R. (2003). Limiting privacy breaches in privacy preserving
data mining. In Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database System, San Diego, California (pp. 211-222).

Fan, L., Cao, P., Almeida, J., & Border, A. Z. (2000). Summary cache: A scalable wide-area web
cachesharing protocol. IEEE/ACM Transactions on Networking, 8(3), 281-293.

Hacigumus, H., Iyer, B., Li, C., & Mehrotra, S. (2002a). Executing SQL over encrypted data in the
database-service-provider model. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Database, Madison, Wisconsin (pp. 216-227).

Hacigumus, H., Iyer, B., & Mehrotra, S. (2002b). Providing database as a service. In Proceedings of
the International Conference on Data Engineering, San Jose, California (pp. 29-40).

Hacigumus, H., Iyer, B., & Mehrotra, S. (2004). Efficient execution of aggregation queries over
encrypted relational databases. In Proceedings of International Conference on Database Systems
for Advanced Applications, (pp. 125-136). Jeju Island, Korea.

Hoeffding, W. (1963). Probability for sums of bounded random variables. Journal of the American
Statistical Association, 58, 13-30.

Iyer, B., Mehrotra, S., Mykletun, E., Tsudik, G., & Wu, Y. (2004). A framework for efficient
storagesecurity in RDBMS. In Proceedings of International Conference on EDBT, Crete, Greece
(pp. 147-164).

Kantarcioglu, M., & Clifton, C. (2002). Privacy preserving distributed mining of association rules
on horizontally partitioned data. In Proceedings of the ACM SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery, Madison, Wisconsin (pp. 24-31).

Kantarcioglu, M., Jin, J., & Clifton, C. (2004). When do data mining results violate privacy? In
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Seattle, Washington (pp. 599-604).

Kargupta, H., Datta, S., Wang, Q., & Sivakumar, K. (2003). On the privacy preserving properties
of random data perturbation techniques. In Proceedings of the 3rd International Conference on
Data Mining, Melbourne, Florida (pp. 99-106).

Li, Z., & Ross, K. A. (1995). PERF join: An alternative to semijoin and Bloom join. In Proceedings of
the International Conference on Information and Knowledge Management, Baltimore, Maryland
(pp. 137-144).

Lindell, Y., & Pinkas, B. (2002). Privacy preserving data mining. Journal of Cryptology, 15(3), 177-
206.

Mullin, J. K. (1990). Optimal semijoins for distributed database systems. IEEE Transactions on
Software Engineering, 16(5), 558-560.

Mykletun, E., Narasimha, M., & Tsudik, G. (2004). Authentication and integrity in outsourced
databases. In Proceedings of the 11th ISOC Annual Network and Distributed System Security
Symposium, San Diego, California.

Oliveira, S., & Zaiane, O. (2002). Privacy preserving frequent itemset mining. In Proceedings of the
IEEE ICDM Workshop on Privacy, Security and Data Mining, Maebashi City, Japan (pp. 43-54).

Oliveira, S., & Zaiane, O. (2003a). Algorithms for balancing privacy and knowledge discovery
in association rule mining. In Proceedings of the 7th International Database Engineering and
Applications Symposium, Hongkong, China (pp. 54-63).

Oliveira, S., & Zaiane, O. (2003b). Protecting sensitive knowledge by data sanitization. In Proceed-
ings of the 3rd IEEE International Conference on Data Mining, Melbourne, Florida (pp. 211-
218).

Pang, H., & Tan, K. L. (2004). Authenticating query results in edge computing. In Proceedings ofthe
20th International Conference on Data Engineering, Boston, Massachusetts (pp. 560-571).

Pinkas, B. (2002). Cryptographic techniques for privacy preserving data mining. ACM SIGKDD Ex-
plorations, 4(2), 12-19.

Rizvi, S., & Haritsa, J. (2002). Maintaining data privacy in association rule mining. In VLDB’02,
Hongkong, China (pp. 682-693).

@ Springer

278 J Intell Inf Syst (2007) 29:253-278

Saygin, Y., Verykios, V. S., & Clifton, C. (2001). Using unknowns to prevent discovery of association
rules. Sigmod Record, 30(4), 45-54.

Vaidya, J., & Clifton, C. (2002). Privacy preserving association rule mining in vertically partitioned
data. In Proceedings ofthe 8th ACM SIGKD D International Conference on Knowledge Discovery
and Data Mining, Alberta, Canada (pp. 639-644).

Yao, A. (1986). How to generate and exchange secrets. In Proceedings of the 27th IEEEFOCS,
Ontario, Canada (pp. 162-167).

Zheng, Z., Kohavi, R., & Mason, L. (2001).Real world performance of association rule algorithms.In
Proceedings of the 7th ACM-SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, California (pp. 401-406).

@ Springer

	Preserving privacy in association rule mining with bloom filters
	Abstract
	Introduction
	Assumptions
	Contributions of the paper
	Related work
	Organization of the paper

	Problem formulation
	Bloom filter revisited
	Our problem

	Analysis
	Our method
	Counting phase
	Pruning phase
	Candidates generating phase
	Extension

	Experiments
	On synthetic data
	Precision
	Scalability
	Flexibility of storage requirement

	On real data
	Basic experiment
	Improvement
	Storage saving

	Conclusions
	Proofs
	Estimate of false positive
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

